
ICTCS 2015

Compliance of binary session contracts

Franco Barbanera1

Department of Mathematics and Computer Science
University of Catania

Catania, Italy

Ugo de’Liguoro2

Department of Computer Science
University of Torino

Torino, Italy

Abstract

The relation of compliance formalises the notion of client satisfaction in client/server interactions. We
describe three weakenings of such a relation in the context of session contracts, a session-based restriction
of the theory of contracts.

Keywords: Contracts, sessions, reversible computations, orchestration.

1 Introduction

Session types and contracts are two formalisms used to study client/server proto-

cols. Session types have been introduced in [13] as a tool for statically checking safe

message exchanges through channels. Contracts, on the other hand, as proposed in

[10,14,11], are a subset of CCS without τ , that address the problem of abstractly

describing behavioural properties of systems by means of process algebra. In be-

tween these two formalisms lie session contracts 3 as introduced in [4,3,8,9]; this is

a formalism interpreting the session types into a subset of contracts.

In the theory of contracts, as well as in the formalism of session contracts, the

notion of compliance plays a central role. A client ρ is defined as being compliant

with a server σ (written as ρ a σ) whenever all of its requests are satisfied by the

1 Email: barba@dmi.unict.it
2 Email: ugo.deliguoro@unito.it
3 They were dubbed session behaviours in [4,3]. For sake of uniformity and since session contract sounds
more appealing, we adhere here to this name.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:barba@dmi.unict.it
mailto:ugo.deliguoro@unito.it

Barbanera, de’Liguoro

server. In this note we survey on some recent results of ours concerning weaker no-

tions of compliance that are more permissive (and hence stronger than) the original

concept, although such concepts remain decidable.

2 Compliant session contracts

Session contracts are expressions generated by the grammar:

σ, ρ ::= 1 |
∑

i∈I ai.σi |
⊕

i∈I ai.σi | x | rec x.σ
where the ai and ai are pairwise distinct input/output actions, and σ is not a

variable in rec x.σ.

We take the equi-recursive standpoint and consider any expression of the form

rec x.σ as identical to σ{rec x.σ/x}. The capabilities of session contract expressions

are defined via the LTS:∑
i∈I ai.σi

ai−→ σi
⊕

i∈I ai.σi −→ aj .σj a.σ
a−→ σ

where the simple arrow represents an internal action; so + and ⊕ are external

and internal choice from CCS without τ , respectively. Finally the communication

semantics is given by:

ρ
α−→ ρ′ σ

α−→ σ′

ρ‖σ −→ ρ′‖σ′
ρ −→ ρ′

ρ‖σ −→ ρ′‖σ

σ −→ σ′

ρ‖σ −→ ρ‖σ′

where α ambiguously represents an input or an output capability and a = a. Note

that the parallel composition ‖ is not in the syntax of session contracts, and it is

essentially a testing operator.

Definition 2.1 A client ρ and a server σ are compliant, written ρ a σ, if

∀ρ′, σ′. ρ‖σ ∗−→ ρ′‖σ′ 6−→ =⇒ ρ′ = 1

where
∗−→ is the reflexive and transitive closure of −→ and 6−→ is its complement.

Observe that the interaction among ρ and σ needs not to terminate for ρ a σ
to hold; the simplest case is that of recx. a.x a recx. a.x. However compliance is a

decidable relation:

Theorem 2.2 For any ρ and σ it is decidable whether ρ a σ.

3 Three weakenings of compliance

3.1 Skipping server outputs

Consider a ballot service whose behaviour is described by the following contract:

BallotServiceAB , recx. Login.(Wrong.x ⊕ Overload.x ⊕ Ok.(VoteA + VoteB)).

This service can receive a login from a client, a voter, via the input action Login; if

the login is correct the server issues to the client the message Ok enabling the client

to vote for either candidates A or B via a continuation consisting of the external

choice + of the input actions VoteA and VoteB. In case the login is incorrect or the

service is busy, the messages Wrong or Overload are sent to the client respectively.

In both cases the voter is allowed to retry the login by recursion.

On the other hand consider the following client:

Voter , recx. Login.(Wrong.x+ Overload.x+ Ok.VoteA).

2

Barbanera, de’Liguoro

Then Voter a BallotServiceAB even if Voter is not the dual of BallotServiceABC.

However Voter is not compliant with

BallotServiceBehSkp ,
recx. Login.(Wrong.InfoW.x ⊕ Overload.x ⊕ Ok.Id.(VoteA.(Va1 + Va2)

+ VoteB.(Vb1 + Vb2)))

because of the actions InfoW and Id, representing infos about the failure of the login

and an identifier of the voting transaction, respectively. Such outputs, however, have

hardly any control significance, and could be discarded without compromising the

client-server interaction. Let us then modify the communication LTS by adding the

rule: ρ 6⇓ a σ
a−→ σ′

ρ‖σ skp−−→ ρ‖σ′

where ρ 6⇓ a means that there is no ρ′ such that ρ
∗−→ a−→ ρ′, to prevent that the

skipped output a from the server has a meaningful match on the client side.

Definition 3.1 The session contracts ρ and σ are skip-compliant if they satisfy the

same condition as in definition 2.1 plus the condition that any infinite reduction of

ρ‖σ under the relation −→ ∪ skp−−→ is not definitely an infinite reduction under
skp−−→

alone.

Theorem 3.2 ([2]) The relation askp admits a sound and complete axiomatisation

which is decidable.

3.2 Sessions that rollback

In [5] we have considered an extension of the contract syntax and semantics by

allowing both server and client to rollback to certain marked points; this rollback

that synchronously must happen on both sides, is caused by an internal move of

either agents. A different motivation for rolling back is to recover from a failure:

Buyer , bag.price.(card⊕ cash)⊕ belt.price.(card⊕ cash)

Seller , bag.price.(card + cash) + belt.price.cash

where a buyer is willing to purchase either a bag or a belt, and to decide about the

payment only after knowing the price. But the seller doesn’t provide payment by

card after choosing a belt, so that Buyer 6a Seller. In [6] we extend the contract syntax

by an external sum of outputs
∑

i∈I ai.σi and treat both forms of external choice

retractable, in the sense that if the reduction out of ρ‖σ ∗−→ ρ′‖σ′ gets stuck because

no communication is possible among ρ′ and σ′, and ρ′ 6= 1, then the interaction

synchronously rollbacks to the latest external choice.

In [6] we define a notion of reduction among pairs of contracts of the shape

γ ≺ σ where γ is a stack recording the discarded branches of the past choices in the

interaction leading to σ; then a compliance relation arbk is defined as in definition

2.1 but w.r.t. the new reduction relation.

Theorem 3.3 There exists a sound and complete axiomatisation of the relation

arbk, together with an algorithm deciding derivability in the formal system; hence

arbk is decidable.

3

Barbanera, de’Liguoro

3.3 Orchestrated compliance

It might be the case that client satisfaction cannot be achieved because of just a

difference in the order in which the partners exchange information, or because one

of them provide some extra un-needed information.

Consider the example of a meteorological data processing system (MDPS)

that is permanently connected to a weather station to which it sends, ac-

cording to its processing needs, particular data requests. After the requests,

the MDPS expects to receive the data in the order they were requested:

MDPS , recx . tempReq . humReq . temperature . humidity .x

Assume a weather station to be able to send back the asked-for information in

the order decided by its sensors, interspersed with information about wind speed :

WeatherStation , recx . tempReq . humReq .(temperature . humidity . wind .x

⊕
humidity . temperature . wind .x)

With the standard notion of compliance, it is not difficult to check that

MDPS 6a WeatherStation, since the client MDPS has no input action for the wind

data, and since it could occur that the temperature and humidity data are delivered

in a different order than expected by MDPS.

A natural solution allowing permutation of input/output action consists of de-

vising a process that could act as a mediator, called orchestrator by Padovani [15].

However, due to known results about communicating finite state machines (see

e.g. [12]), the resulting compliance relation would be undecidable without suit-

able constraints to the orchestrators, e.g. they have bounded buffering capacity

in Padovani’s work. Nonetheless right the example above shows that no bounded

buffer would contain the unbounded number of copies of the message wind from the

weather station.

In [1] we consider orchestrators with unbounded buffers, whose syntax, with

respect to [15], is restricted in order to enforce the fact that, in any session, nonde-

terminism is due just to the client or the server. We then manage to show that it

is decidable to check whether a client ρ is compliant with a server σ by means of a

given orchestrator (denoted by f : ρ aa σ).

Theorem 3.4 Given ρ,σ and f , it is decidable to check whether f : ρ aa σ holds.

Even more, it is possible to synthesize the set of orchestrators, if any, which

can make a given ρ compliant with a given σ. However, not all the synthesized

orchestrators are necessarily respectful, i.e. produce reasonable interactions. A

respectful orchestrator must be sound (it never sends an element to a server or

to a client if the element has not been previously received); client-respectful (all

outputs from the client must be eventually delivered); and not definitely server-

inputted (it does not just accepts inputs from the server indefinitely from a certain

point on). All the above properties making an orchestrator respectful are decidable.

Theorem 3.5 It is decidable to check whether a given orchestrator f is respectful.

4

Barbanera, de’Liguoro

4 On-going work

In [7] a two-players game-theoretic interpretation on event structures is provided

for client-server systems of session contracts. Starting from an observation by Bar-

toletti, we are currently providing a three-players game interpretation of retractable

contracts, according to which the retractable actions correspond to moves of a third

player, whose goal is having the first player win. Such a goal resembles that of an or-

chestrator. In fact we are also working on showing that the winning strategies for the

third player in the above mentioned interpretation are in one-to-one correspondence

with compliance-enabling orchestrators for client-server systems of session contracts

(where just particular input-output actions can actually be orchestrator-driven).

References

[1] Barbanera, F., and U. de’ Liguoro, Orchestrated compliance for session-based client/server interactions,
in: ICE 2015, EPTCS (2015), to appear.

[2] Barbanera, F. and U. de’ Liguoro, Loosening the notions of compliance and sub-behaviour in
client/server systems, in: Proceedings 7th ICE 2014, EPTCS 166, 2014, pp. 94–110.

[3] Barbanera, F. and U. de’ Liguoro, Sub-behaviour relations for session-based client/server systems,
Math. Struct. in Comp. Science (2014), to appear, published online.

[4] Barbanera, F. and U. de’Liguoro, Two notions of sub-behaviour for session-based client/server systems,
in: PPDP (2010), pp. 155–164.

[5] Barbanera, F., M. Dezani-Ciancaglini and U. de’ Liguoro, Compliance for reversible client/server
interactions, in: BEAT, EPTCS 162, 2014, pp. 35–42.

[6] Barbanera, F., M. Dezani-Ciancaglini, I. Lanese and U. de’ Liguoro, Retractable contracts, in: PLACES,
EPTCS (2015), to appear.

[7] M. Bartoletti, T. Cimoli, G.M. Pinna and R. Zunino, Contracts as games on event structures, Accepted
for publication in JLAMP.

[8] Bernardi, G. and M. Hennessy, Modelling session types using contracts, in: Proceedings of 27th Annual
ACM SAC ’12 (2012), pp. 1941–1946.

[9] Bernardi, G. and M. Hennessy, Modelling session types using contracts, Math. Struct. in Comp. Science
(2014), to appear, published online.

[10] Carpineti, S., G. Castagna, C. Laneve and L. Padovani, A formal account of contracts for Web Services,
in: WS-FM, number 4184 in LNCS (2006), pp. 148–162.

[11] Castagna, G., N. Gesbert and L. Padovani, A theory of contracts for web services, ACM Trans. on
Prog. Lang. and Sys. 31 (2009), pp. 19:1–19:61.

[12] Cécé, G. and A. Finkel, Verification of programs with half-duplex communication, Inf. Comput. 202
(2005), pp. 166–190.
URL http://dx.doi.org/10.1016/j.ic.2005.05.006

[13] Honda, K., V. T. Vasconcelos and M. Kubo, Language primitives and type disciplines for structured
communication-based programming, in: ESOP, LNCS 1381 (1998), pp. 22–138.

[14] Laneve, C. and L. Padovani, The Must Preorder Revisited: An Algebraic Theory for Web Services
Contracts, in: CONCUR’07, LNCS 4703 (2007), pp. 212–225.

[15] Padovani, L., Contract-Based Discovery of Web Services Modulo Simple Orchestrators, Theoretical
Computer Science 411 (2010), pp. 3328–3347.

5

http://dx.doi.org/10.1016/j.ic.2005.05.006

	Introduction
	Compliant session contracts
	Three weakenings of compliance
	Skipping server outputs
	Sessions that rollback
	Orchestrated compliance

	On-going work
	References

