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Abstract

We discuss the following result. Given two languages L1, L2 ⊆ A∗, we say that L1 is commutatively
equivalent to L2 if there exists a bijection f : L1 −→ L2 from L1 onto L2 such that, for every u ∈ L1,
f(u) is obtained from u by a permutation of the letters of u. Then every bounded context-free language is
commutatively equivalent to a regular language.
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1 Main contribution

Let A = {a1, . . . , at} be an alphabet of t letters, and let ψ : A∗ −→ Nt be the

corresponding Parikh morphism, that is, the function that maps every word u into

the vector (|u|a1 , . . . , |u|at), where, for every i = 1, . . . , t, |u|ai is the number of

occurrences of the symbol ai in u.

Given two languages L1 and L2 over the alphabet A, we say that L1 is commu-

tatively equivalent to L2 if there exists a bijection f : L1 −→ L2 from L1 onto L2

such that, for every u ∈ L1, ψ(u) = ψ(f(u)). A language L is termed bounded if

there exist non-empty words u1, . . . , uk, with k ≥ 1, such that L ⊆ u∗1 · · ·u∗k. In the

group of three papers [9,10,11], the proof of the following theorem is provided.
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Theorem 1.1 Every bounded context-free language L1 is commutatively equivalent

to a regular language L2. Moreover the language L2 can be effectively constructed

starting from an effective presentation of L1.

Actually we prove our result for the broader class of bounded semi-linear lan-

guages whose definition is postponed in Section 3 (see Definition 3.1).

Theorem 1.2 Every bounded semi-linear language L1 is commutatively equivalent

to a regular language L2. Moreover the language L2 can be effectively constructed

starting from an effective presentation of L1.

Theorem 1.1 was announced in [7] with a sketch of the proof.

2 Connection with context-free languages

Theorem 1.1 naturally fits in the theory of bounded context-free languages devel-

oped by Ginsburg and Spanier. A strictly related notion is that of sparse language:

a language L is termed sparse if its counting function, that is, the function fL
that maps every integer n ≥ 0 into the number fL(n) of words of L of length n, is

polynomially upper bounded. Sparse languages play a meaningful role both in Com-

puter Science and in Mathematics and have been widely investigated in the past.

The interest in this class of languages is due to the fact that, in the context-free

case, it coincides with the one of bounded languages ([3,5,6,15,16,17,18,19,20,23];

an excellent survey on the relations between bounded languages and monoids of

polynomial growth can be found in [12]). In this framework, it is worth noticing

the following immediate consequence of Theorem 1.1: for every sparse context-free

language L1, there exists a regular language L2, over the same alphabet of L1, such

that fL1 = fL2 . Therefore, the counting function of a sparse context-free language

is always rational. This result is interesting since, as it is well known [14], the

counting function of a context-free language may be transcendental. An immedi-

ate consequence of the latter is that Theorem 1.1 does not hold for an arbitrary

context-free language. Indeed, if such a language were commutatively equivalent

to a regular one, then its counting function would be rational. On the other hand,

there exist context-free languages whose generating functions are algebraic not ra-

tional, as for instance in the case of the Dyck languages, and, even, transcendental,

as said before. In this context, as a related result, we mention a remarkable contri-

bution by Beal and Perrin where the problem of the length equivalence of regular

languages on alphabets of prescribed size is considered [1]. We would like to give

a broader picture about the relations between our contribution and some classical

theorems on bounded context-free languages. The first result that deserves to be

mentioned is a well-known theorem by Parikh [21]. For this purpose, let us first

introduce a notion. Given two languages L1 and L2 over the alphabet A, we say

that L1 is Parikh equivalent to L2 if ψ(L1) = ψ(L2). The theorem by Parikh states

that, given a context-free language L1, its image ψ(L1) under the Parikh map is a

semi-linear set of Nt. As a straighforward consequence of Parikh theorem, one has

that there exists a regular language L2 which is Parikh equivalent to L1. It is worth

noticing that the property of Parikh equivalence by no means implies the property

of commutative equivalence. Indeed, let A = {a, b} and let L1 = (ab)∗ ∪ (ba)∗
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and L2 = (ab)∗. One has that ψ(L1) = ψ(L2) = (1, 1)⊕ (the symbol ⊕ denotes

the Kleene star operation in the monoid N2) so that L1 is Parikh equivalent to

L2. On the other hand, one immediately checks that L1 cannot be commutatively

equivalent to L2. Another theorem that is central in this context has been proved

by Ginsburg and Spanier [15]. For this purpose, let us first introduce a notion. Let

L ⊆ u∗1 · · ·u∗k be a bounded language where, for every i = 1, . . . , k, ui is a non-empty

word over the alphabet A. Let ϕ : Nk −→ u∗1 · · ·u∗k be the map defined as: for every

tuple (`1, . . . , `k) ∈ Nk,
ϕ(`1, . . . , `k) = u`11 · · ·u

`k
k .

The map ϕ is called the Ginsburg map. Ginsburg and Spanier proved that L is

context-free if and only if ϕ−1(L) is a finite union of linear sets, each having a

stratified set of periods. Roughly speaking, a stratified set of periods corresponds

to a system of well-formed parentheses. However, Ginsburg and Spanier theorem

is of no help to study counting problems and, in particular, our problem, because

of the ambiguity of the representation of such languages. Indeed, let A = {a, b, c}
be a three letter-alphabet and let the language L = {aibjck | i, j, k ∈ N, i =

j or j = k} [4]. Since L is inherently ambiguous, by [16] Theorem 6.2.1, L cannot

be represented unambiguously as a finite disjoint union of a stratified set of periods.

In this context, another important recent result that gives a characterization of

bounded context-free languages in terms of finite unions of Dyck loops has been

proven in [19]. However, neither this latter result can be used to deal with our

problem because of the ambiguity of the representation of such languages as a finite

union of Dyck loops. In addition to the inherent ambiguity of context-free languages,

one should observe that the set u∗1 · · ·u∗k is, in general, ambiguous as a product of

languages of A∗. Such two ambiguities, which are of different nature, interfere

making a non trivial task the construction of a regular language that provides the

solution of the problem.

Theorem 1.2 is so surprising that it could look implausible. We have therefore

decided to provide a proof of the statement, as robust as possible, writing it in all

the details. The proof is long and, in order to make its reading easier, it is splitted

in three papers [9,10,11]. The first one deals a special but meaningful issue of the

problem: it has been written to help the reader to capture some key elements of

our technique. The second and the third papers describe the solution in the full

generality. In particular, the second paper shows a result on rational sets of vectors

of Nk which is in our opinion interesting in its own right.

3 An overview of the solution

We now give a short description of some key aspects of the proof of Theorem 1.2.

Let us first recall the definition of bounded semi-linear language.

Definition 3.1 A bounded language L ⊆ u∗1 · · ·u∗k is said to be semi-linear if there

exists a set B of Nk such that ϕ(B) = L and B =
⋃n
i=0Bi, n ≥ 1, where B0 is a

finite set of vectors and, for every i = 1, . . . , n, Bi is a set of dimension ki > 0:

Bi = b
(i)
0 + {b(i)

1 , . . . ,b
(i)
ki
}⊕,(1)

where b
(i)
0 ,b

(i)
1 , . . . ,b

(i)
ki
, are vectors of Nk.
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By a well-known theorem of Eilenberg and Schützenberger [13], we can assume

that, in every set Bi of (1), the vectors b
(i)
1 , . . . ,b

(i)
ki
, are linearly independent in Qk

and, moreover, that the sets Bi’s are pairwise disjoint. The sets Bi’s satisfying these

last two properties are called simple. By a result of Honkala [17], we can always

construct a semi-linear set B of Nk such that ϕ(B) = L and ϕ is injective on B.

The proof of Theorem 1.2 is essentially based upon two main tools:

• The first tool has been conceived to prove the theorem under the assumption

that, for every i = 1, . . . , n and for every j = 1, . . . , ki, the word ϕ(b
(i)
j ), that

represents via ϕ the vector b
(i)
j of (1), contains at least two distinct letters.

From an intuitive point of view, the idea underlying this tool is the following.

First, by using a technique of geometrical nature (inspired to our work [8]), we

provide a new decomposition of B into simple sets, every one of each fulfills

the following property: the words that represent, via the Ginsburg map ϕ, the

generators of such simple sets are sufficiently long.

Afterwards, by using techniques of Combinatorics on words [2], we codify the

latter words with words of a unique factorization code. This allows us to cope

with the ambiguity (as a product of languages) of the set u∗1 · · ·u∗k and to construct

the regular language which is commutatively equivalent to the context-free one.

• The second tool provides the solution of Theorem 1.2 in the opposite case,

that is, under the assumption that there exists a letter a ∈ A such that, for every

i = 1, . . . , n, all the words ϕ(b
(i)
1 ), . . . , ϕ(b

(i)
ki

) are powers of a.

We treat such last case by reducing the study of commutative equivalence for

languages to that of the commutative equivalence for semi-linear sets of vectors.

More precisely, given two subsets S1, S2 of Nk, we say that S1 is commutatively

equivalent to S2 if there exists a bijection f : S1 −→ S2 from S1 onto S2 such

that, for every v ∈ S1, |v| = |f(v)|, where |v| denotes the sum of the components

of v. In [10] we prove that every semi-linear set of Nk is commutatively equivalent

to a subset which is recognizable in Nk in the classical sense of Elgot and Mezei.

• By eventually combining the two tools, we then provide the proof of Theorem 1.2,

by treating all the other intermediate cases, that is, the cases where the words,

representing, via the Ginsburg map ϕ, the generators of the simple sets of (1)

either contain more than two letters or are powers of a given letter.

4 Open problems

Finally, we mention an open problem pointed out in [22]. Also in the theory of formal

series there is a notion of commutative equivalence (see [2], Ch. 14). Given a N-series

σ ∈ N〈〈A〉〉 over an alphabet A of non-commutative variables, the commutative

image of σ is the N-series ψ(σ) ∈ N[[A]] over the commutative variables ψ(A)

defined as: for every u ∈ ψ(A∗), (ψ(σ), u) =
∑

ψ(w)=u (σ,w). Given two series

σ1, σ2 ∈ N〈〈A〉〉, we say that σ1 is commutatively equivalent to σ2 if they have the

same commutative image. In this context, as a possible extension of Theorem 1.1,

one can ask whether every N-algebraic series with bounded support is commutatively

equivalent to a rational one. Theorem 1.1 is a first step of the study of this problem.
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